Reagents for Pharma Industry Chapter 2 Spectroscopy

UV/VIS Spectrophotometry Standards

UV/VIS spectrophotometers must be checked periodically to ensure their correct functioning, thereby guaranteeing the reliability of their results. The European Pharmacopoeia and the USP recommend certain solutions for the control of UV/VIS equipment that can be used to detect possible deviations arising from electrical, mechanical or optical problems.

The parameters to be checked in UV/VIS spectroscopy according to the European Pharmacopoeia and USP are as follows:

- Absorbance
- Accuracy of the wavelength
- Stray light limit
- Spectral resolution

PanReac AppliChem supplies four liquid standards that allow these parameters to be verified with the following advantages:

- Compliance with Ph. Eur. and USP
- Packaged in ready-to-use, disposable ampoules
- Certificate of analysis with each pack
- Three-year expiry date

Solutions for the control of:	Composition	Code	Package
Absorbance	Potassium Dichromate solution 4x10 mL standard ampoules (60.06 mg/L K₂Cr₂O7 in H₂SO4 0.01N) 4x10 mL blank ampoules (H₂SO4 0.01N)	395462.2590	🙆 8 x 10 ml
Spectral resolution	Toluene solution in n-Hexane 4x10 mL standard ampoules (0.02 mL toluene in 100 mL n-hexane) 4x10 mL blank ampoules (n-hexane)	395461.2590	🛯 8 x 10 ml
Stray light	Potassium Chloride solution 8x10 mL standard ampoules (12 g/L KCl in H₂O)	395460.2590	🛿 8 x 10 ml
Wavelength	Holmium Oxide solution according to Ph. Eur. 8x10 mL Standard ampoules (40.0 g/L Ho $_20_3$ in HClO $_4$ 10% v/v)	396070.2590	🛯 8 x 10 ml

Solvents for UV-Vis

When preparing the solution of the substance to be examined, the solvent should completely solubilize the sample at the desired concentration. The solvent should be UV transparent at the measuring wavelength so as not to cause interference which could affect quantitative results.

When using volatile solvents stoppered cells should be employed to eliminate evaporation which can lead to changes in the solution concentration and ultimately affect quantitation.

PanReac AppliChem offers an excellent selection of UV-Vis transparent solvents to meet the most exigent spectrophotometric needs. We assure consistent, dependable performance and extremely low levels of optical impurities. Our solvents offer the following benefits:

- More reliable sample identification, since solvents have highest chemical purity and contain no extraneous peaks
- Enhanced sensitivity, due to highest UV transmittance/lowest UV absorbance
- Reproducible absorption curve throughout the entire spectrum due to the highest batch-to-batch consistency

Product name	Assay (G.C.) min.	Non- volatile matter max.	Water max.	(as q m	Fluorescence (as quinine) max. 254 nm 365 nm					Code	Pack		
Acetone	99.9 %	0.0003 %	0.2 %	-	2 ppb	330 nm 15%	335 nr 60%) nm 5%	345 nm 95%	ı ≥ 350 nm 98%	361007.1611 361007.1612 361007.16153 361007.0515 361007.0537	➡ 1L ➡ 2.5 L ➡ 4 L □ 10 L □ 30 L
Acetic Acid glacial	99.8 %	0.001 %	0.1 %	-	-	254 nn 25%	n) nm 5%		≥ 300 nm 98%	361008.1611 361008.1612	<u> </u>
Acetonitrile	99.9 %	0.0004 %	0.02 %	1 ppb	1 ppb	193 nm 55%		15 nm 70%	÷) nm)%	≥ 230 nm 98%	361881.1611 361881.1612 361881.0314 361881.0516	八 1L 八八 八八 八八 八八 八八 八八 八八 八八 八八 八 八 八 八 八
Benzene	99.8 %	0.0003 %	0.01 %	-	2 ppb	280 nm 28 25%	85 nm 70%	290 nm 80%	300 n 90%		nm ≥340 nm % 98%	361192.1611	兲 1L
1-Butanol	99.9 %	0.0003 %	0.03 %	-	-		20 nm 50%	230 nm 75%	240 n 85%		nm ≥270 nm % 98%	361082.1611	兲 1L
tert-Butyl Methyl Ether	99.9 %	0.0003 %	0.03 %	2 ppb	2 ppb	210 nm 20%	235 nr 50%	÷) nm 0%	255 nm 85%	n ≥ 280 nm 98%	363312.1611 363312.1612	
Carbon Disulfide	99.9 %	0.0005 %	0.005 %	-	-	390 nm 50%	÷)0 nm 30%		Inm)%	≥ 420 nm 98%	361244.1611	靑1L
Chloroform stab. with ~ 150 ppm of amylene	99.8 %	0.0003 %	0.01 %	1 ppb	1 ppb	245 nm 15%		55 nm 70%) nm 5%	≥ 280 nm 98%	363101.1612	주 2.5 L

<<													
Product name	Assay (G.C.) min.	Non- volatile matter max.	Water max.	(as q m	escence juinine) nax. 365 nm		UV tr	ansmit	ttance (min.) at	λ	Code	Pack
Chloroform stab. with ethanol	99.0 %	0.0003 %	0.01 %	1 ppb	1 ppb	245 nm 20%	250 nm 50%	i 257 ni 80%			m ≥280 nm 98%	361252.1611	靑1L
		1										361250.1611	靑1L
Qualahawana	99.9 %	0.0003	0.01 %	1	1	210 nm	220 nm	ı 230 n	m 240 r	ım 250 r	m ≥260 nm	361250.1612	🖰 2.5 L
Cyclohexane	99.9 %	%	0.01 /0	1ppb	1ppb	15%	50%	80%	90%	6 98%	99%	361250.0515	<u>∏</u> 10 L
												361250.0537	<u>∏</u> 30 L
D'able and the set												361254.1611	<u>루1L</u>
Dichloromethane stab. with ~ 20	99.9 %	0.0003	0.01 %	1 ppb	1ppb	235 nm	240	÷	45 nm	255 nm	≥260 nm	361254.1612	青 2.5 L
ppm of amylene		%			, pps	40%	75	%	90%	98%	99%	361254.16153	AL
												361254.0516	<u>∏</u> 25 L
Diethyl Ether stab.	98.0 %	0.0003	0.02 %	2 ppb	0.5 ppb	236 nr		252 nm) nm	≥ 300 nm	362551.1611	<u> 루</u> 1L
with ethanol		%	0.02.70	- pps	010 pp.0	50%		80%	9	4%	99%	362551.0537	<u>∏</u> 30 L
N,N-Dimethylacet-	99.9 %	0.0005	0.03 %	-	-	280 nm	1	7	310 nm	320 nm	≥ 360 nm	363145.1611	<u>₹</u> 1L
amide		%				50%	709	%	89%	93%	98%	363145.1612	🖰 2.5 L
N,N-Dimethylfor-	99.9 %	0.0003	0.05 %	-	-	275 nr	÷	290 nm	1) nm	≥ 330 nm	361785.1611	売 1L
mamide		%				60%		80%	9	D%	98%	361785.1612	青 2.5 L
Dimethyl Sulfoxide	99.9 %	0.001 %	0.05 %	-	-	270 nm	280 nm	*	*	*	m ≥350 nm	361954.1611	<u>루1L</u>
						30%	63%	70%	80%	s 94%	98%	361954.1612	青 2.5 L
		0.0007				210 nm	220	nm ?	35 nm	245 nm	≥270 nm	361086.1611	<u>루1L</u>
Ethanol absolute	99.9 %	0.0003 %	0.1 %	2 ppb	1 ppb	35%	55		80%	90% 98%		361086.1612	🖰 2.5 L
												361086.16153	₹4L
Ethanol 96% v/v	96 %	0.0005	_	_	_	210 nm	220	7	30 nm	240 nm	≥ 270 nm	361085.1611	<u></u> ₼1L
	00 /0	%				35%	55%	%	72%	90%	98%	361085.0537	<u>∏</u> 30 L
					-		-	ļ		-		361318.1611	_ 兲 1L
Ethyl Acetate	99.9 %	0.0003	0.01 %	2 ppb	1ppb	255 nm	257 nm	7	7	7	m ≥270 nm	361318.1612	_ नित्त 2.5 L
Lilly Acetale	00.0 /0	%	0.01 /0	z hhn	ihhn	20%	32%	50%	80%	6 90%	98%	361318.16153	륨4L
												361318.0515	10 L
		- - - -	-		-							362062.1611	兲 1L
n-Heptane	99.0 %	0.0003	0.005	1ppb	1ppb	210 nn	n :	220 nm	23) nm	≥ 245 nm	362062.1612	青 2.5 L
п-пертапе	00.0 /0	%	%	ihhn	ihhn	50%		80%	9	2%	98%	362062.0314	₿5L
								,				362062.0537	10 JU
n-Hexane	99.0 %	0.0003	0.005	2 pph	2 nnh	200 nm	210 nm	220 n	m 225 r	m 230 r	m ≥245 nm	362063.1611	売 1L
п-пехане	33.0 %	%	%	2 ppb	2 ppb	20%	60%	85%	90%	s 94%	98%	362063.1612	📇 2.5 L
												363242.1611	_ 兲 1L
n Hovens OF%	98.5 %	0.0003	0.01.0/			200 nm	210 г	nm 2	20 nm	230 nm	≥ 245 nm	363242.1612	न 2.5 L
n-Hexane 95%	(isomers)		0.01 %		-	20%	601	%	80%	94%	98%	363242.0515	10 L
									,			363242.0537	Ⅲ 30 L
Hexane, alkanes mixture	95.0 % (isomers)	0.0005 %	0.01 %	-	-	210 40		:	20 nm 85%	≥	254 nm 99%	361347.1612	주 2.5 L

>>

//

<<														
Product name	Assay (G.C.) min.	Non- volatile matter max.	Water max.	(as q m	escence uinine) ax. 365 nm	UV transmittance (min.) at $oldsymbol{\lambda}$					λ	Code	Pack	
Isooctane	99.5 %	0.0003 %	0.005 %	1 ppb	1 ppb	210 nr 50%	n	220 r 80%		235 i 903		≥ 245 nm 98%	362064.1611 362064.1612 362064.16153	淸1L 淸2.5L 류4L
Methanol	99.9 %	0.0005 %	0.03 %	1 ppb	1ppb	210 nm 30%) nm 5%	230 75		240 nm 90%	≥260 nm 98%	361091.1611 361091.1612 361091.16153	<u>류1L</u> 류2.5L 류4L
n-Pentane	99.5 %	0.0003 %	0.005 %	1 ppb	1 ppb	200 nm 40%	- E - 1	nm)%	215 80		220 nm 90%	≥ 240 nm 98%	362006.1611 362006.1612	루1L 루2.5L
1-Propanol	99.8 %	0.0002 %	0.1 %	-	-	210 nm 15%	1) nm)%	240 80	÷ .	250 nm 94%	≥ 260 nm 98%	361885.1611 361885.1612	. 兲 1L .兲2.5L
2-Propanol	99.9 %	0.0003 %	0.05 %	-	-	217 nm 50%		2 nm)%	242 90		250 nm 95%	≥260 nm 98%	361090.1611 361090.1612 361090.16153	<u>류1L</u> 류2.5L 류4L
Propionitrile	99.9 %	0.0005 %	0.03 %	-	2 ppb	235 94			250 97		1.1	290 nm 99%	365732.1611	兲 1L
Tetrachloro- ethylene	99.9 %	0.0005 %	0.01 %	-	2 ppb	295 nm 50%	+) nm)%	305 85	÷	350 nm 89%	≥ 400 nm 94%	361455.1611 361455.1612	<u></u> 焄1L 롥2.5L
Tetrahydrofuran	99.9 %	0.0002 %	0.02 %	-	-	240 nm 30%	245 nr 50%		0 nm '0%	265 nm 80%	n 275 nr 90%	m ≥310 nm 99%	361736.1611 361736.1612	루1L 루2.5L
Toluene	99.9 %	0.0003 %	0.01 %	-	2 ppb	288 nm 32%	290 nr 50%		13 nm 13%	300 nm 80%	1 310 nr 90%	n ≥350 nm 98%	361745.1611 361745.1612 361745.16153	<u>류1L</u> <u>류2.5L</u> <u>류</u> 4L
Water	-	0.0003 %	-	1 ppb	0.5 ppb	200 nr 98%	n	210 r 98%	;	254 i 993	;	≥ 300 nm 99%	361074.1611 361074.1612	<u></u> 禹1L 禹2.5L

All solvents are filtered through 0.2 μm and bottled under nitrogen atmosphere. APHA color: ${\leq}10$

Solvents for UV-Vis in Returnable Containers

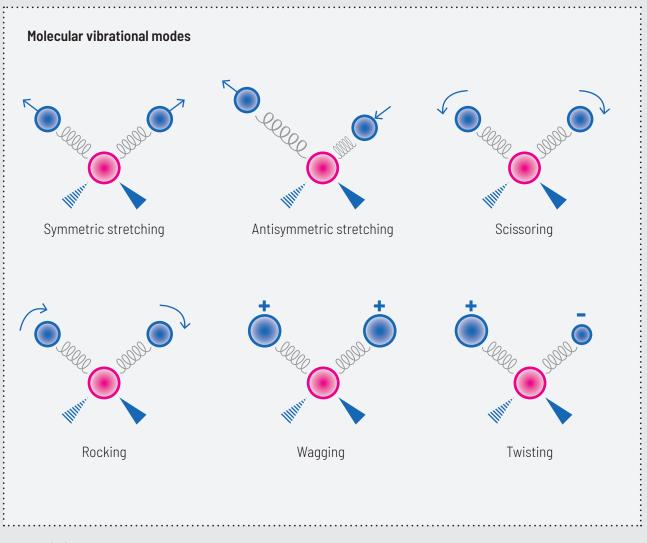
In and

The consumption of solvents in 10 L and 30 L returnable stainless steel containers represents a fantastic opportunity to contribute to environmental sustainability.

It also involves a significant saving in the consumption of packaging materials as a result of the long-lasting and resistant nature of stainless steel containers, which therefore simplifies laboratory waste management.

Download our brochure "Solvents in Returnable Containers" and find out more at https://www.itwreagents.com/download_file/brochures/A176/en/A176_en.pdf

Types of b 10 L - code BI	arrels & Withdrawal syste	ms	Solvents in Returnable Containers
Material Total Capacity Diameter	Stainless steel AISI 304 12.2 L 229 mm	Tauros	A
Height Wall thickness Opening Weight	380 mm 1 mm Thread BL 45, internal opening 29 mm 2.4 kg		AN
Admissible working pro UN Transport approval			
Accessories Description Withdrawal system for	Code	7	
30 L – code Bl		•	PanReac Applichem
Material Total Capacity Diameter	Stainless steel AISI 304 33 L 363 mm		
Height Wall thickness Opening	435 mm 1.5 mm Centrical bung 2' with Tri-Sure screw cap		
Weight Admissible working pro UN Transport approval	10 kg essure max. 5 bar 1417 X 2.0 / 900		
	Threaded adapter with 3 nozzles		
Gas feeding tube (coiled hose of		K	
polyamide) Accessories		Flexible hose (stainless steel braided PTFE)	
Description			

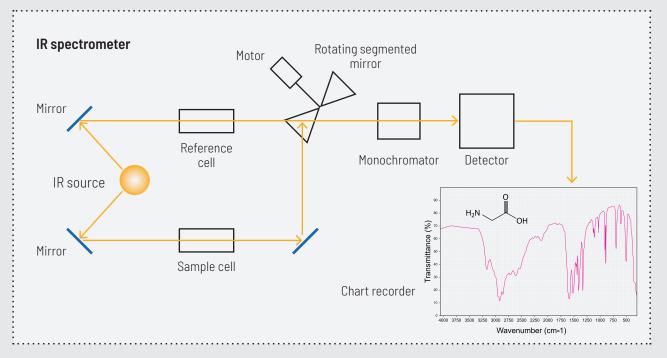

Infrared Spectroscopy (IR)

Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) involves the interaction of **infrared radiation**, 12800 - 10 cm⁻¹ (780 nm - 1000 μm), with **a molecule**.

The IR region of the spectrum can be divided into three zones, both from the point of view of applications and devices: **Near IR** (NIR): 12800-4000 cm⁻¹, **Mid IR**: 4000-400 cm⁻¹; **Far IR**: 400-10 cm⁻¹, being the Mid-IR region where most of the traditional analytical applications occur.

It covers a range of techniques, mostly based on **absorption** spectroscopy. It relies on the fact that molecules absorb **specific frequencies** that are characteristic of their structure and can be associated with a **particular type of bond**.

A molecule can **vibrate** in many ways (i.e. symmetric and antisymmetric **stretching**, **scissoring**, **rocking**, **wagging and twisting**), and each way is called a vibrational mode and is reflected in the **IR spectrum**. The more complex a molecule is, the more bonds it has and their vibrational spectra are correspondingly more complex.



Infrared (IR) spectroscopy is one of the most common and widely used spectroscopic techniques by inorganic and organic chemists due to its usefulness in **determining structures of compounds** and **identifying them** as each functional group absorbs at a different and specific IR frequency.

Apparatus

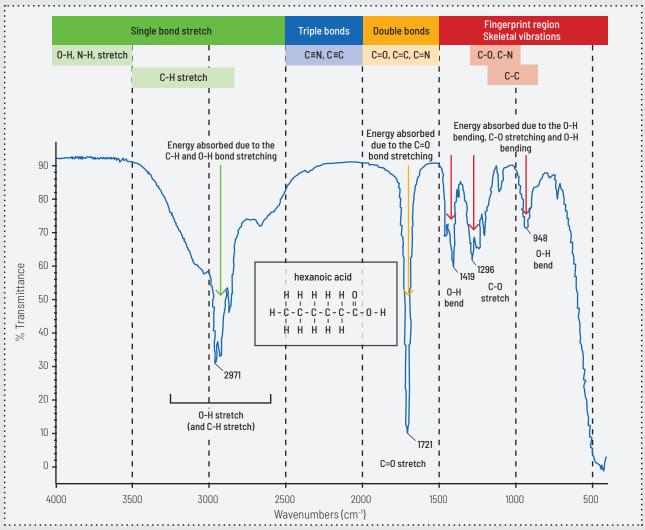
The **spectrophotometers** used to obtain the near and medium infrared consist of a **light source**, **monochromator** or interferometer and **detector**, which allow obtaining spectra in the region between 780 nm and 25000 nm (12800 cm⁻¹ to 400 cm⁻¹). Currently, infrared spectrophotometers use an interferometer instead of a monochromator in which case the polychromatic radiation impinges on the sample and the spectra are obtained in the frequency domain with the help of the Fourier transform.

Normally the spectrum is given as a function of transmittance, the quotient of the intensity of the transmitted radiation and the incident radiation. It may also be given in absorbance.

The absorbance (A) is defined as the logarithm to base 10 of the reciprocal of the transmittance (T):

$$A = \log_{10} \left(\frac{1}{T} \right) = \log_{10} \left(\frac{l_0}{I} \right)$$

 $T = |/|_{0}$


 $I_0 = intensity of incident radiation$

I = intensity of transmitted radiation

IR Spectrum

The following graphic shows an example of an infrared spectrum for hexanoic acid with five different absorptions characteristics of different bond vibrations.

Sample preparation

IR Spectroscopy is a versatile technique that allows to obtain spectra of solids, liquids and gases using in each case the appropriate cells or supports that must be transparent to the incident radiation. Alkali halides are the most commonly used in the transmission methods (NaCl, KBr, KCl, etc.). In comparison with other instrumental techniques, the samples to be analyzed require little or no preparation.

Gaseous samples require a sample cell with a long path length to compensate for the diluteness. The path length of the sample cell depends on the concentration of the compound of interest. A simple glass tube with length of 5 to 10 cm equipped with infrared-transparent windows at the both ends of the tube can be used for concentrations down to several hundred ppm.

Liquid samples can be sandwiched between two plates of a salt (commonly sodium chloride, although other salts such as potassium bromide or calcium fluoride are also used). The plates are transparent to the infrared light and do not introduce any lines onto the spectrum.

Liquid or solid samples in solution are prepared in a suitable solvent, choosing a concentration and a path length of the cell that give a satisfactory spectrum. Generally, good results are obtained with concentration of 10-100 g/L for a path length of 0.5-0.1 mm. The absorption due to the solvent is compensated by placing in the reference beam a similar cell containing the solvent used.

Solid samples are dispersed in a suitable liquid (mull) or in a solid (halide disc), as appropriate. If prescribed in the monograph, make a film of a molten mass between 2 plates transparent to infrared radiation.

Potassium Bromide for IR Spectroscopy

in the

Potassium bromide (KBr) is the most common alkali halide used as infrared optical windows and components for general spectroscopy because of its transparency from the near ultraviolet to long-wave infrared wavelengths (0.25-25 µm) and has no significant optical absorption lines in its high transmission region.

In IR spectroscopy, solid samples which are difficult to melt or dissolve in any suitable IR-transmitting solvent are analyzed by grinding with potassium bromide powder, and pressing into a disc.

This method requires a high quality potassium bromide.

In PanReac AppliChem we produce a high quality potassium bromide specially controlled to satisfy the highest requirements in IR spectroscopy.

Product name	Code	Package
Determine Dremide for ID	331489.1608	🖰 100 g
Potassium Bromide for IR	331489.1609	🖰 250 g

Solvents for IR Spectroscopy

The solvent should not exhibit interactions or chemical reactions with the substance to be analyzed, nor should it damage the cell. Those regions of the spectrum in which the solvent has a strong absorption should not be taken into account. The organic solvents to be used must be free of water.

You can find the solvents that PanReac AppliChem can offer in the previous section dedicated to UV spectroscopy.

Atomic Absorption Spectroscopy (AAS)

Panreac Applichem

22

There are 3 types of sample atomizers

- Flame technique: a flame atomizer is composed of a **nebulization system** regulation and a **burner**. Fueloxidant mixtures are commonly used to produce a range of temperatures from about 2000 K to 3000 K. Samples are nebulized and acidified water is the solvent of choice.
- Cold vapor and hydride technique: the atomic vapor may also be generated outside the spectrometer. This is notably the case for cold-vapor method for mercury or for certain hydride-forming elements such as arsenic, antimony, bismuth, selenium and tin. For mercury, atoms are generated by chemical reduction with stannous chloride or sodium borohydride and the atomic vapor is swept by a stream of an inert gas into a cold quartz cell mounted in the optical path of the instrument. Hydrides thus generated are swept by an inert gas into a heated cell in which they are dissociated into atoms.
- Electrothermal atomization technique: an electrothermal atomizer is generally composed of a graphite tube furnace and an electric power source atomizes the entire sample and retains the atomic vapor in the light path for an extended period. This improves the detection limit. Samples, liquid as well as solid, are introduce directly into the graphite tube furnace which is heated in a programed series of steps to dry the sample and remove major matrix components by pyrolysis and to then atomize all of the analyte.

Interferences

Chemical, ionization, physical and spectral interferences are encountered in atomic absorption measurements.

- **Chemical interferences** are due to the formation of stable compounds at the combustion temperature of the flame. It can be compensate adding matrix modifiers (as **lanthanum salts**) of releasing agents (as interferences of P, Al or Si).
- **Ionization interferences** are due when the element is easily converted to an ion. Then the number of atoms in ground state able to absorb energy is reduced thus the atomic absorption is reduced. The use of specific ionization buffers (as **Cesium Chloride** or **Potassium Chloride**), which are much easier to ionize, compensates for this effect.
- **Physical interferences** as viscosity or high levels of salts can be eliminated by diluting the sample, for example.
- Spectral interferences can be avoided by using a different resonance line.

Sample preparation

The preparation of the sample may require a dissolution, a digestion (mostly microwave-assisted), an ignition step or a combination thereof in order to clear up the sample matrix and/or remove carbon-containing material.

Sample preparation is always a critical step in atomic spectroscopy analyses. The **reagents used** for sample preparation must be **very pure** in order to make sure to reliably determine the trace elements you are analyzing for.

We offer a **range of acids** of different purity adequate depending on the type of AAS technique used. We also offer **matrix modifiers** to suppress the chemical or ionization interferences, **reduction reagents** (for the cold vapor and hydride techniques) and **standards** traceable to NIST standards reference materials.

Acids

Product name	Flame	Cold Vapor	Hydrides	Graphite chamber	Code	Package
ludrachlaria Asid 77%					381020.1611	兲 1000 ml
Hydrochloric Acid 37%				Х	381020.1612	兲 2.5 L
Hydrochloric Acid 37%				7	471020.1611	兲 1000 ml
(low Hg content)	X	Х	Х		471020.1612	🕂 2.5 L
Nitric Acid 65%		7 9 9 9 9 9 9 9			383255.1609	🕂 250 ml
				Х	383255.1611	兲 1000 ml
Nitric Acid 65%					473255.1611	🖰 1000 ml
(low Hg content)	Х	Х	Х		473255.1612	🕂 2.5 L
0.14.1.1.105.0004					471058.1611	兲 1000 ml
Sulfuric Acid 95-98% (low Hg content)	Х	Х	Х		471058.1612	📇 2.5 L
					471058.0716	🆻 25 L

Matrix modifiers

Product name	Chemical suppressor	lonization suppressor	Code	Package
Buffer Solution Cesium Chloride/Lanthanum Chloride	Х	Х	176168.1211	脣 1000 ml
Casium Chlavida		V	122509.1206	屑 25 g
Cesium Chloride	Х		122509.1208	屑 100 g
Lanthanum(III) Chloride 7-hydrate	Х		122848.1208	屑 100 g
Lanthanum(III) Nitrate 6-hydrate	Х		122669.1208	屑 100 g
	V		122705.1607	🖰 50 g
Lanthanum(III) Oxide (Reag. Ph. Eur.)	Х		122705.1609	📇 250 g
Detective Oblevide		V	131494.1210	脣 500 g
Potassium Chloride		Х	131494.1211	脣 1000 g

Reducing agents

Product name	Code	Package
Hydroxylammonium Chloride	471914.1209	脣 250 g
Codium Develuduida for analysia	123314.1606	📇 25 g
Sodium Borohydride for analysis	123314.1608	📇 100 g
Tin(II) Chloride 2-hydrate	471303.1609	📇 250 g

Oxidizing agents

Product name	Code	Package
Potassium Permanganate	471527.1210	न्हि 500 g

Standards

Mar M

Product name	Element (1 g/L)	Composition	Code	Package
Aluminium	AI	Al(NO ₃) ₃ .9H ₂ O in HNO ₃ 0.5N	313170.1208 313170.1210	न्हा 100 ml न्हा 500 ml
Arsenic	As	As ₂ O ₃ in HNO ₃ 2-5%	313171.1208	- []- []- []- []- []- []- []- []- []- []
Barium	Ba	Ba(NO ₃) ₂ in HNO ₃ 0.5N	313172.1208	脣 100 ml
Cadmium	Cd	Cd(NO ₃) ₂ .4H ₂ O in HNO ₃ 0.5N	313175.1208	厅 100 ml
		00(1103)2.1112011111103 01011	313175.1210	₽ 500 ml
Calcium	Ca	Ca(NO ₃) ₂ .4H ₂ O in HNO ₃ 0.5N	313176.1208 313176.1210	脣 100 ml 脣 500 ml
Chromium	Cr		313179.1208	辰 100 ml
	U	Cr(NO ₃) ₃ .9H ₂ O in HNO ₃ 0.5	313179.1210	🕞 500 ml
Cobalt	Со	Co(NO ₃) ₂ .6H ₂ O in HNO ₃ 0.5N	313177.1210	脣 500 ml
Copper	Cu	Cu(NO ₃) ₂ .3H ₂ O in HNO ₃ 0.5N	313178.1208	译 100 ml
Fluoride	F	NaF in H ₂ O	313178.1210 312682.1210	<u> </u>
		HAuCl ₄ .4H ₂ O in HCl 1.2%	:	脣 500 ml
Gold	Au		313672.1208	脣 100 ml
Iron	Fe	Fe(NO ₃) ₃ .9H ₂ O in HNO ₃ 0.5N	313182.1208 313182.1210	脣 100 ml 脣 500 ml
			313189.1208	丙 100 ml
Lead	Pb	Pb(NO ₃) ₂ in HNO ₃ 0.5N	313189.1210	r 500 ml
Lithium	Li	LiCl in HCl ~1%	313183.1210	脣 500 ml
Magnesium	Mg	Mg(NO ₃) ₂ .6H ₂ O in HNO ₃ 0.5N	313184.1208	귬 100 ml
	9		313184.1210	唇 500 ml
Manganese	Mn	Mn(NO₃)₂ in HNO₃ 1N	313185.1208 313185.1210	脣 100 ml 脣 500 ml
			313186.1208	다. (국국 100 ml
Mercury	Hg	$Hg(NO_3)_2$ in $HNO_3 0.5N$	313186.1210	r 500 ml
Molybdenum	Мо	(NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O in NH ₄ OH 0.5N	314111.1208	脣 100 ml
			314111.1210	唇 500 ml
Nickel	Ni	Ni(NO ₃) ₂ .6H ₂ O in HNO ₃ 0.5N	313187.1208 313187.1210	脣 100 ml 脣 500 ml
			313190.1208	丙 100 ml
Potassium	K	KCI in HCI ~1%	313190.1210	脣 500 ml
Selenium	Se	SeO ₃ H ₂ in HNO ₃ 1N	313191.1208	辰 100 ml
			313191.1210	丙 500 ml
Silicon	Si	Na_2SiO_3 in H_2O	312683.1208 312683.1210	脣 100 ml 脣 500 ml
Silver	Ag	AgNO₃ in HNO₃ 0.5N	313188.1210	厅 500 ml
Sodium	Na	NaCl in HCl ~1%	313192.1208 313192.1210	脣 100 ml 脣 500 ml
	0		313180.1208	丙 100 ml
Tin	Sn	SnCl₄ in HCl 5N	313180.1210	r 500 ml
Titanium	Ti	TiCl₄ in HCl 5N	313960.1208	न्हि 100 ml
Zinc	Zn	Zn(NO ₃) ₂ .6H ₂ O in HNO ₃ 0.5N	313193.1208	唇 100 ml
			313193.1210	नि 500 ml

Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES) Mass Spectrometry (ICP-MS)

Inductively Coupled Plasma-Atomic Emission Spectroscopy **(ICP-AES)** also referred to as inductively coupled plasma-optical emission spectrometry **(ICP-OES)**, is an **atomic emission spectrometry** method that uses an inductively coupled plasma (ICP) as the excitation source.

Inductively Coupled Plasma-Mass Spectroscopy **(ICP-MS)** is a **mass spectrometry** method that uses an inductively coupled plasma (ICP) as the excitation source.

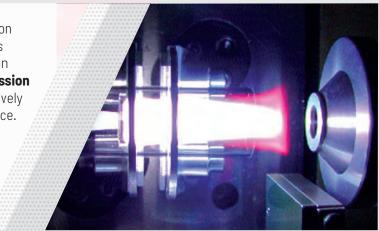


Image courtesy of Perkin Elmer

An ICP is a highly ionized inert gas (usually argon) with equal number of electrons and ions sustained by a radiofrequency (RF) field. The **high temperature** reached in the plasma (7000 °K), successively desolvates, vaporizes, excites (AES detection) and ionizes (MS detection) atoms from the sample.

ICP-AES

ICP-AES exploits the fact that excited electrons emit energy at a given wavelength as they return to ground state after excitation. The intensity of the **energy emitted** at the chosen wavelength is proportional to the amount (concentration) of that element in the sample being analyzed.

Theoretical detection limit: approximately from 0.1 μ g/L (0.1 ppb) to 50 μ g/L (50 ppb) depending on the element and assuming there are no spectral interferences.

ICP-MS

ICP-MS utilizes the ability of the ICP to generate charged ions from the element species within a sample. These ions are then directed into a mass spectrometer, which separates them according to their **mass-to-charge ratio** (m/z). Most mass spectrometers have a quadrupole system or a magnetic sector. Ions of the selected mass/ charge ratio are directed to a detector (channel electromultiplier, Faraday cup, dynodes), where ion currents are converted into electrical signals.

The element is quantified according to the number of ions arriving and generating electrical pulses per unit time.

Theoretical detection limit: approximately from 0.001 μ g/L (1 ppt) to 0.01 μ g/L (10 ppt) depending on the element and assuming there are no spectral interferences.

Apparatus

The apparatus consists essentially of the following elements:

- Sample introduction system consisting of a peristaltic pump delivering the solution at constant flow rate into nebulizer
- Radio-frequency (RF) generator
- Plasma torch (ICP)
- Transfer optics focusing the image of the plasma at the entrance slit (ICP-AES)
- Wavelength dispersive devices consisting of diffraction gratings, prisms, filters or interferometers (ICP-AES)
- Interface region including cones to transport ions to the ion optics (ICP-MS)
- Mass spectrometer (ICP-MS)
- Detector
- Data acquisition unit

Sample preparation

The sample preparation usually involves a step of digestion of the matrix by a suitable method, for example in a microwave oven.

Several-sample introduction systems tolerate high acid concentration, but the use of sulfuric (H_2SO_4) and phosphoric acids (H_3PO_4) can contribute to background emission. Therefore, nitric (HNO_3) and hydrochloric acids (HCI) are preferable.

The choice of acids used for the preservation of water samples and for the preparation of digested samples is very important. The acid to be used must have a very low concentration of metal in order not to contaminate the samples. Also the choice of the type of acid is very important to avoid:

- unwanted side reactions that can interfere in the analysis,
- formation of volatile compounds which are easily lost from the sample,
- damage to glass parts (special sample introduction system is necessary when using hydrofluoric acid).

Nitric (HNO₃) and hydrochloric (HCI) acids are typically used for the preparation of these samples, often in combination with each other to optimize digestion conditions.

Nitric acid and peroxide (H₂O₂) are often used for organic matrices as the peroxide is an effective oxidizing agent and destroys the organic matrix.

In some cases hydrofluoric acid (HF) will have to be added to destroy certain materials such as titanium dioxide or silica if they have been used in the final product.

PanReac AppliChem offers its ranges of **high purity reagents** for trace metal analysis at **ppb and ppt** levels in order to satisfy the high quality demand of reagents for trace analysis by **ICP-OES** in environmental, quality control and research laboratories.

Acids for trace metal analysis (ppb)

This range consists of acetic, hydrochloric, nitric, sulfuric, hydrofluoric and perchloric acids in 500 mL, 1000 mL and 2.5 L high density polyethylene (HDPE) bottles.

Main advantages:

 In most cases, a metal impurity content of less than 0.1 ppb (µg/L) is guaranteed for 60 different elements.

Compared to glass bottles:

- Low level of metal impurities leaching from the polyethylene.
- Light-weight bottles for easier handling and greater safety against breakage in the laboratory.

Product name	Code	Package
Acetic Acid glacial	721008.0011	न्हि 1000 ml
	721019.0010	न्हि 500 ml
Hydrochloric Acid 35%	721019.0011	脣 1000 ml
	721019.0012	脣 2.5 L
Hydrofluoric Acid 48%	721028.0010	न्हि 500 ml
	721037.0010	न्हि 500 ml
Nitric Acid 69%	721037.0011	脣 1000 ml
	721037.0012	脣 2.5 L
Developie Acid 70%	722175.0010	脣 500 ml
Perchloric Acid 70%	722175.0011	脣 1000 ml
Oulfunia Asid 07 00%	721058.0010	脣 500 ml
Sulfuric Acid 93-98%	721058.0011	न्हि 1000 ml

Acids for trace metal analysis (ppt)

These reagents are **specially purified** by multiple distillation to achieve the **lowest impurity levels**, obtaining products that can be used as a baseline for the analysis of trace metals. The greatest challenge has always been to minimize the impurities of some elements like Fe, Zn, Ni and Cu with a special analytical importance and to limit the presence of elements such Ca, Na and Al which are ubiquitous in the environment as well as in the container materials. Thanks to this special care in the manufacturing, this range is able to offer reagents with concentrations of the above elements lower than 100 ppt (ng/L) and most lower than 10 ppt (ng/L). It represents the range of reagents with the lowest metal content intended for trace metal analysis. Our reagents for trace metal analysis (ppt) are available in the following sizes in both Teflon PFA and FEP: 250 mL and 500 mL. Water is available in specially washed HDPE bottles.

28

Main advantages

in the second

- Our reagents for trace metal analysis (ppt) include the analysis of more than 60 metals at parts per trillion levels providing the best level of purity available on the market.
- Manufactured by sub-boiling distillation.
- The concentration level for the majority of metals is below 10 ppt, being all bellow 100 ppt.
- Batch-to-batch homogeneity for more reproducible results.
- Manufactured and packaged in a clean room, class 10, free of contaminants to guarantee the highest levels of purity.
- Stored in specially selected teflon bottles. The material is controlled prior to the bottle manufacture. Every bottle is leached with hot acid for two weeks in order to eliminate any contamination material due to metal traces.

Product name	Code	Package
ludrachlaria Acid 75%	711019.0009	脣 250 ml
Hydrochloric Acid 35%	711019.0010	脣 500 ml
Hydrofluoric Acid 48%	711028.0010	脣 500 ml
Hydrogen Peroxide 30% w/w	716323.0010	脣 500 ml
Nituia A aid CO9/	711037.0009	脣 250 ml
Nitric Acid 69%	711037.0010	脣 500 ml
Water	711074.0011	न्हि 1000 ml

ICP Standards

For the calibration of the ICP equipment, PanReac AppliChem offers a range of ICP element standards that meet the highest purity and quality requirements demanded by these highly sensitive techniques.

The range of ICP element standards consists of 72 elements in concentrations ranging from 1.000 to 10.000 g/L.

The concentration of each element is strictly controlled to an accuracy of $\pm 0.2\%$ of the true value, with NIST traceability.

The traces of 69 elements are analyzed by ICP and the result is specified on the certificate of analysis.

The preparation is carried out using raw materials of the highest available purity: 99.999% for metals as well as ultra-pure water and acids. The ICP standards are available in pre-washed 100-mL PE bottles, all of which are supplied with their corresponding detailed certificate of analysis. This certificate includes the composition of the standard, its date of manufacture, the minimum expiry date, the actual value with respect to the guaranteed value, traceability and the concentration of trace impurities.

Single Element Standards

Product name	Element	Composition	Code (1 g/L)	Code (10 g/L)	Package
Aluminium	AI	AI in 2-5% HNO_3	766034.1208	775943.1208	न्नि 100 ml
Antimony	Sb	Sb in 2-5% HNO₃	766035.1208	-	귬 100 ml
Arsenic	As	As_2O_3 in 2-5% HNO_3	766036.1208	-	न्नि 100 ml
Barium	Ва	$BaCO_3$ in 2-5% HNO_3	766037.1208	-	辰 100 ml
Boron	В	H_3BO_3 in H_2O	765900.1208	-	न्नि 100 ml
Cadmium	Cd	Cd in 2-5% HNO₃	766038.1208	-	न्नि 100 ml
Calcium	Ca	$CaCO_3$ in 2-5% HNO_3	766040.1208	775950.1208	辰 100 ml
Chloride	CI	KCI in H_2O	765903.1208	-	辰 100 ml
Chromium	Cr	Cr in 2-5% HNO₃	766043.1208	-	न्नि 100 ml
Cobalt	Co	Co in 2-5% HNO₃	766041.1208	-	न्हि 100 ml
Copper	Cu	Cu in 2-5% HNO₃	766042.1208	-	न्हि 100 ml
Germanium	Ge	Ge in 2-5% HNO $_3$ + traces HF	765910.1208	-	न्नि 100 ml
Gold	Au	Au in 20% HCl	766061.1208	-	न्नि 100 ml
Iron	Fe	Fe in 2-5% HNO₃	766049.1208	775967.1208	न्नि 100 ml
Lead	Pb	Pb in 2-5% HNO₃	766063.1208	-	न्नि 100 ml
Magnesium	Mg	Mg in 2-5% HNO₃	766051.1208	775976.1208	न्नि 100 ml
Manganese	Mn	Mn in 2-5% HNO₃	766052.1208	-	脣 100 ml
Mercury	Hg	Hg in 2-5% HNO₃	766060.1208	-	🕞 100 ml
Molybdenum	Mo	Mo in 2-5% HNO_3 + traces HF	766053.1208	-	🕞 100 ml
Nickel	Ni	Ni in 2-5% HNO3	766054.1208	-	թ 100 ml
Nitrogen	Ν	$(NH_4)_2SO_4$ in H_2O	765920.1208	-	🕞 100 ml
Palladium	Pd	Pd in 20% HCl	765922.1208	-	🕞 100 ml
Phosphorus	Р	H_3PO_4 in H_2O	766384.1208	775907.1208	🕞 100 ml
Potassium	К	KNO_3 in 2-5% HNO_3	766050.1208	775989.1208	🕞 100 ml
Rhodium	Rh	RhCl ₃ .3H ₂ O in 20% HCl	765926.1208	-	🕞 100 ml
Scandium	Sc	Sc_2O_3 in 2-5% HNO_3	765930.1208	-	🕞 100 ml
Selenium	Se	Se in 2-5% HNO3	766055.1208	-	🕞 100 ml
Silicon	Si	(NH₄)₂SiF₀ in 5% HF	765997.1208	-	🕞 100 ml
Silver	Ag	Ag in 2-5% HNO₃	766062.1208	-	脣 100 ml

30

<<					
Product name	Element	Composition	Code (1 g/L)	Code (10 g/L)	Package
Sodium	Na	NaNO₃ in 2-5% HNO₃	766056.1208	775999.1208	🕞 100 ml
Sulphur	S	H_2SO_4 in H_2O	765898.1208	775946.1208	🕞 100 ml
Tin	Sn	Sn in 20% HCl	766047.1208	-	🕞 100 ml
Titanium	Ti	Ti in 5% HF	766057.1208	-	🕞 100 ml
Tungsten	W	W in 5% HF	765939.1208	-	100 ml
Vanadium	V	V in 2-5% HNO_3	765938.1208	-	🕞 100 ml
Yttrium	Y	Y_2O_3 in 2-5% HNO ₃	765915.1208	-	🕞 100 ml
Zinc	Zn	Zn in 2-5% HNO₃	766058.1208	-	🕞 100 ml
Zirconium	Zr	Zr in 5% HF	765940.1208	-	🕞 100 ml

Multi Element Standards

The off

Product name	Elements	Matrix	Code	Package
Standard solution containing 9 elements	As, Be, Cd, Cr, Pb, Hg, Ni, Se, Tl (100 mg/L each)	10% HNO3	766334.1208	🕞 100 ml
Standard solution containing 21 elements	As, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, TI, V, Zn (100 mg/L each)	5% HNO₃	766335.1208	न्हि 100 ml
Standard solution containing 24 elements	Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K,Li, Mg, Mn, Na, Ni, Pb, Se, Sr, Te, Tl, Zn (100 mg/L each)	2% HNO3	766333.1208	न्हि 100 ml
Standard solution containing 23 elements	Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl, Zn (1000 mg/L each)	2% HNO₃	766332.1208	(주) 100 ml

Package pictograms

₼	Glass bottle	Ä	Aluminium bottle
(P)	Plastic bottle	6	Glass ampoule
P	Plastic jerrycan	آ	Fluoropolymer bottle
Π	Stainless steel drum (returnable)		